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The two-body problem for the metric of Nordtvedt 

Brendan Breent 
Mathematics Department, Imperial College of Science and Technology, 
London SW7 2RH, UK 

MS received 6 September 1972 

Abstract. The postnewtonian n-body equation for the general metric expansion of Nordtvedt 
is derived. By taking n = 2, the advance of the periastron and the motion of the centre of 
mass in the two-body problem are examined. This enables the formulae for these effects to 
he found in the Brans-Dicke and Nordtvedt scalar-tensor theories. 

1. Introduction 

The idea of considering relativistic gravitational tests in terms of general metric 
expansions has received some attention during the past few years. This is based on the 
work of Schiff (1967) and others who expanded the metric of a single body in terms of 
the dimensionless quantity mlr where m = GM/cZ  is the geometrized mass of the body 
and r the radial distance from it. If the metric is of the form 

ds2 = gpv dx' dxv, P, v = 0,1,2,3,  

with signature (+ 1, - 1, - 1, - l), then the expansion is : 

g O k  = O, k = 1,2,3, 

g,, = - l i - 2 y -  &,+ . . . )  i :I k, 1 = 1,2, 3, 

where a, /? and y are dimensionless constants whose values depend on the particular 
gravitational theory being considered. Using this expansion theoretical formulae for 
relativistic tests are calculated in terms of a, p, y and other constant factors (see Nordtvedt 
(1968) for a summary of these). Experiments are looked upon as a means of determining 
the values of a, /? and y rather than as agreeing or disagreeing with a particular theory. 
For example, the test involving the measurement of the time delay of a radar signal 
reflected by a planet and passing close to the Sun determines a value for (a + y). Recently, 
Shapiro and his colleagues have made an accurate determination of this expression 
(Shapiro et al 1971). For a systematic treatment of this approach to experimental 
relativity see Thorne and Will (1971). 
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Nordtvedt (1969) has extended the above metric by writing down a general post- 
newtonian expansion for n moving bodies. He used this to examine an effect which 
does not arise in general relativity, that is, the violation of the equivalence principle by 
massive bodies. In the present paper the postnewtonian n-body equation of motion 
for Nordtvedt’s metric is derived. A special case of this equation is then used to examine 
the two-body problem for this general metric. 

2. The postnewtonian metric expansion 

The generalization of equation ( 1 )  to fz moving sources in the postnewtonian (ie e-’) 
approximation given by Nordtvedt (1968, 1969) is as follows : 

where mi,  v i ,  ui  and ai are respectively the geometrized mass position, velocity and 
acceleration of the ith source (i = 1, . . . , n), v z  = and x, a‘, U”, U’”, A and A‘ are further 
dimensionless constants taking specific values for a particular gravitational theory. 
Note that the M’ term in equation (2a) is different from that given by Nordtvedt (1969). 
This is because Nordtvedt (1968) wrote the term in the two-body case as 

and seems to have assumed that the n-body generalization of this is 

which is easily seen to be false. The true generalization is that given in equation (2a), and 
it is straightforward to check that Nordtvedt’s expression is twice as large as this. 
However, this does not seem to affect any of Nordtvedt’s results. 

The A‘ term in equation (2b) can be made to vanish by the gauge transformation 
(Nordtvedt 1970) : 

4 ~ 1  a 
at 

xo’ = x o  - -- - C milr - ril , 

Apart from eliminating the A‘ term, this also has the effect of making the following 
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changes in the other parameters 

A + A -  A’, x -+ x - ~ A ’ ,  a” + a“ - 2At, a”’ -+ a”’ - 8A’. 

This shows that the individual parameters do not have a direct physical significance, 
since they are coordinate dependent. Only certain combinations of them will be 
measurable. Choosing a particular value for A‘ is equivalent to adopting a gauge in 
which to work. Hence, from now on A’ will be taken to be zero. 

For each gravitational theory there is a set of values for the parameters in the post- 
newtonian metric. For example, in general relativity the parameters take the values : 

(see Einstein et a1 1938, Eddington and Clark 1938). 
On the other hand, in the Brans-Dicke theory the values are : 

where w is the dimensionless constant of the theory, w N 5, (see Estabrook 1969, 
Nordtvedt 1970), and in the Nordtvedt scalar-tensor theory the values are : 

20’ 
(4 + 20)  ( 3 + 2w) ‘ S I ‘ =  1 +  

w’ 
(4+ 2w)(3 + 20)” p =  1+ 

where w’ = dw/d4 and 4 denotes the scalar field (see Nordtvedt 1970). 
It may be noted in passing that a must be equal to unity for any theory which is to 

agree with newtonian theory in the static weak field limit. But, for generality, a is retained 
explicitly. 

3. The n-body equations 

Only gravitational theories which can be expressed in geometrical terms are being con- 
sidered here and so it will be assumed that the equations of motion of test particles are 
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geodesics of the space-time. These are obtainable from the variation, 

0 = 6 ds, i 
s 

which can be written 

0 = 6 (gpv dx' dx")"' 

where t is the coordinate time and uk = dxk/dt. It is convenient to write equations (2) as 

go, = 1 + hgJ + hfd,  

the superscript denoting powers of c - ~ ,  

g0k = h O k ,  

and 

gkl = - ( 1 - h ) 6 k L .  

Then equation (6) becomes, to a sufficient approximation, 

1 v 2  1 u4 1 1 1 V 2  
0 6 c d t  1------+-(hb1J+hd2, ' j - -h(1)2+-h0k~k+~ (h+ihblJ j  s ( 2 c 2  8c4 2 8 O 0  C 2c (7) 

Carrying out the variation the following vector equation of motion is obtained: 

dv 1 d d d 
dt  2c2 dt dt dt  
-+- -(u'v)+-(C(Y)V)-C-B(Y) = -c2VA(r)-cV(B. v)++v2VC (8) 

where 
A = L((h"'+h'2')-lh(1'2, 

B =  ( ~ 0 1 > ~ 0 2 ~ ~ 0 3 ) >  

c = - (h  + ihbld). 

2 00  0 0  8 00  

Using equations (2) (with A' = 0), equations (9) become 

(9) 

%=-Z- 4A mivi 
c i ( r - r i l  

and 

Substituting these into equation (8) gives the desired equation of motion. By using the 
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newtonian approximation, which in this case is 

mic2(V - V i )  

ly-Vi13 
U N =  - a x  

where appropriate, the equation of motion can be written in the form 

m,(v - V i )  . (U - V i )  

Ir-ri13 

2 

{ (a  + 2 ) ) ~ -  4Aui} - _  3a,,, { ( ~ - ~ i ) * a i }  

2 I r - r i i2  2 

The newtonian value for U ,  may be substituted in the right hand side of equation (10). 
On substituting the values for the parameters given by equation (3) ,  equation (10) 

gives the equation of motion in general relativity, in agreement with the result of 
Eddington and Clark (1938). The corresponding equation in the Brans-Dicke theory 
is obtained when the values of the parameters from equation (4) are substituted into 
equation (10). This agrees with the equation found by Brans (1962) and Estabrook 
(1969). Finally, the equation in the Nordtvedt theory can be obtained by using equation 
(51, namely, 

., m.(V-ri) 6+4w 2w’ mjc2 
a =  - L L  j r - ~ ~ / ~  iC2 - ( 2 + 0 + ( 4 +  2w)(3  t- 2 ~ ) ~ )  7 

2“ mkc2 3+20 l + O  
- ( +(4+ 2 0 ) ( 3  + 2 ~ ) ~ )  Li m+ (x) ” + (G) u 2  

3 {(Y-Yi) e U i } 2  1 mi(v - ui) 

(11)  

Note that equation (1 1) immediately reduces to the Brans-Dicke equation of motion 
when w’ = 0, and to the general relativistic equation when w‘ = 0 and w = CO. 

Equation ( I O )  gives the postnewtonian equation of motion of a test particle in the 
gravitational field of n point masses. For later applications it will be convenient to have 
the equation of motion of one of the masses in the gravitational field of the other (n - 1) 
masses. Equation ( I O )  can be extended to cover this case by writing v = v i ,  U = ui and 
U = ui and dropping any self-contributions (ie infinities) which occur on the right hand 
side of the equation. The equation then becomes 

+ {(a+2y)vi-4Avj} 
j i i  

3 a ” ’ { ( V i - V j ) .  U j } 2  
-- 

2 lri-rj12 
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4. The two-body problem 

The formulae in general relativity for the two effects to be considered here are well known : 
(i) the advance of the periastron of the relative orbit of the two bodies is the same as that 
for a test particle orbiting a single body with a mass equal to  the sum of the masses 
of the two bodies (Fock 1959) ; (ii) there is no secular acceleration of the centre of mass 
(Eddington and Clark 1938). Use is now made of a special case of equation (12) to 
calculate the corresponding formulae for the general metric of Nordtvedt. 

Firstly, the equation of motion of each body in the gravitational field of the other 
has to be found. From equation (12) it follows that the acceleration of a body (subscript 1) 
in the field of another body (subscript 2) is 

m2c2 a'mlc2 
r12 r12 

+ 2a"v: + - ~ A v ,  . 212 Cz2-(2fi+2ay)---- 

where r12  = ( r 2 - r 1 ) ,  r 1 2  = / r 2 - r 1 / ,  u 1 2  = ( v 2 - u l ) ,  v 1 2  = dr,,/dt, and use has been 
made of the fact that r12 . u12 = r 1 2 v 1 2 .  Also the newtonian approximation for a2 has 
been used, namely, 

The equation for a2 can be obtained by interchanging the subscripts 1 and 2, 
The position of the centre of mass is defined by 

where m = m ,  + m2.  Consequently, 

1 
a, = -(m,al ni + m2a2). (1 5 )  

It is clear Irom the equations for a ,  and a2 (equation (13) and its counterpart) that 

a, = o(c-2). 
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If the frame of reference is chosen to be instantaneously moving with the centre of mass, 
then the velocity of the centre of mass 

u g  = o ( c - 2 ) .  

Hence, from equation (14), 

1 
-(mlul +m2u2) = O ( C - ~ ) .  
m 

Therefore, 

U1 = - 

and 

Using these, equation (13) can be further reduced to 

m2c2 mlc2 
r12 r 1 2  

G(C' - (28  + 2ay)- - (E'  + 4aA)- 

1 

m2f.12 a ,  = ~ 

-- 3 a " r 3 u 2  +,(2sr"mf +4Amlm2 + ym:)uf2 

6 2  

2 m2 l 2  m 

m2 m1 mt (a + 2 ~ ) -  t 4A- + ET - 
m m m  

Again a2 is given by interchanging the subscripts 1 and 2. 

5. Advance of the periastron 

In order to calculate this effect the equation of the orbit of one of the bodies relative to 
the other has to be found. The relative acceleration of body 2 with respect to body 1 is, 
using equation (16) and its counterpart, 

U 1 2  = a2-u ,  

c2(m: + m i )  c2mlm2 
- - -?[amc' - (2p + 2ay) - ( 2 ~ ' +  ~ E A ) -  

6 2  r12  r 1 2  

(17) 
It may be noted that, since u 1 2  = 0 wherever r12 = 0 and u12 = 0, the relative orbit is a 
plane to order c - ~ .  On changing to polar coordinates (Y, e )  centred on body 1 and lying 
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in this plane, the vector equation (17) can be written as the following two scalar 
equations : 

m: +mi m1m2 amc2 - (28 + 2 0 1 y ) c 2 ~  - ( 2 ~  + SaA)c2 __ 
r r 

+(SA - U“‘ - E)- 
m m 

and 

In11712 + (SA - E’’’ - E) - 
r m m 

I d  
r dt 

Integrating equation (19) in the newtonian approximation gives r28 = h + O ( C - ~ ) ,  
where h is a constant. Using this result, equation (19) can be integrated in the post- 
newtonian approximation as 

r 
m +(SA - x”’ - x)- m 1 m 2 )  m + 0(c-4) .  (20) 

On writing U for l/r,  using equation (20) and the fact that 

d2u mc2 
-+U = a--+O(c-2), 
de2 h2 

equation (18) becomes, 

+ ( 2 3 ” + 4 A - y ) 3 )  m 

n11m2 Y- + ( 2 ~ ”  + 4A - y - +a”’) - 
m m 

This is the equation of the relative orbit. 

it follows that, 
The motion of the periastron of this orbit will now be calculated. From equation (21) 

mc2 
U = a-(l+ECOSe)+O(c-2), h2 (23) 

where E is the eccentricity of the orbit, and the origin of 0 has been chosen so that the 
line e = 0 is directed along the line of the periastron of the relative orbit of the two 
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bodies. On substituting equation (23) in the right hand side of equation (22), it is found 
that 

d2u mc2 
- + U  = x-+ constant terms of order c-’ 
de2 h2 

+ < C O S  Q ( a--[(4~’+4xy--2j?)(m:+m:) T4 +{2$3A-a+2c(”-a”‘-y)-2c(’)m,m2] 

+terms in 6’ sin’ d of order c - ~ .  

By noting that the particular integral of 

is 

U = $Ad sin 8, 

it can be deduced from equation (24) that, 

+constant and periodic terms of order c-’ + Q ( c - ~ ) .  

From which it follows that the angular advance of the periastron, per revolution, is 

+ ( 4 8 A  - a + 2%‘‘ - a”’ - y) - U ’ )  -__ 
m2 + rn: 
m ’ {2a(r+./)-p)-’- 

It can easily be seen that, if the relation 

holds between the parameters, then the expression in the large bracket of equation (25) 
is a perfect square. If this is so, then the motion of the periastron i s  of the same type 
as in general relativity, that is, the advance is the same as for a particle orbiting a single 
body of mass m, + m 2 .  Equations (4) and ( 5 )  show that relation (26) holds in both the 
Brans-Dicke and Nordtvedt scalar-tensor theories. It therefore follows that in all three 
theories the advance of the periastron can be written in the form 2nc2K(m, +m2) ’ /h2 ,  
where K = 3 in general relativity, K = (4 + 3w)/(2 + w )  in the Brans-Dicke theory and 

4 +  3w w1 

2 + w  ( 4 + 2 ~ ) ( 3 + 2 w ) ~  
K=----- 

in the Nordtvedt theory. 
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6. Motion of the centre of mass 

The secular acceleration of the centre of mass in the two-body problem will now be 
calculated to order c - ~ .  From equation (15) the acceleration of the centre of mass a ,  is 

1 
m 

(1, = -(m1a1 + m 2 a 2 ) .  

On substituting from equation (16), and its counterpart for a 2 ,  it is found that 

+ (2cr + 2y - 4A + a”‘)i-} v12u12 + O ( C - ~ ) .  
7.12 

By changing to the polar coordinates centred on body 1, defining x = rcosd  and 
y = r sin 0 with similar definitions for x, and yo, using equations (20) and (23) and the 
fact that 

me2 
k 

1 = -a-sin@+O(c-2), 

and 

equation (27) can be written as 

+ a(2a” - y) cos e( 1 + c2 + 26 cos d )  - 3 ua“’c2 sin2 e cos d 

-a(2a+2y-4A+a“’)csin2 ~ } + O ( C - ~ ) ,  
and 

c4 
dd k3  
-- “0 - m 1 m 2 ( m 1 - m 2 ) a - { ( 2 ~ + 2 a y - a ’ - 4 a ~ ) s i n  0(1+ccose) 

+ a(2a” - y) sin tl( 1 + c2  + 2c cos e) - +aa’”c2 sin3 8 

+a(2~+2y-4A+a”’ ) (~+cos  0 )  sin ~ } + O ( C - ~ ) .  (29) 
The secular increase in the velocity of the centre of mass per revolution is found by 

integrating equations (28) and (29) from 0 to 271. It is easily seen that there is no change 
in the y o  component. The increase in the x, component is 

c4 
m1m2(m1 -m2)~E7C{a(2~-2ay-2‘+4aa“-aa”‘-2a2)} .  h (30) 

By the choice of coordinate system the secular acceleration (equation (30)) is directed 
towards the periastron of the smaller or the larger body as the expression in the curly 
brackets is positive or negative. 

As Eddington and Clark (1938) have pointed out a zero result for this secular accelera- 
tion is desirable on general physical grounds. Equation (3) shows that the acceleration 
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is zero in general relativity in agreement with Eddington and Clark’s result. Equations 
(4) and (5) show that a zero result is also obtained in the Brans-Dicke and Nordtvedt 
theories. However, this zero value is certainly not a conclusion to be expected in every 
gravitational theory since equation (30) involves 6 of the 8 postnewtonian parameters. 
If a result of this type is to be regarded as desirable (ie as a necessary condition to be 
satisfied by a gravitational theory) then it places a definite restriction on the types of 
postnewtonian metric which are acceptable. 

Acknowledgments 

I would like to thank Professor G J Whitrow for his help during the preparation of this 
paper. This work was undertaken when the author was in receipt of a Science Research 
Council Research Studentship. 

References 

Brans C 1962 Phys. Rev. 125 2194201 
Eddington A S and Clark G L 1938 Proc. R .  Soc. A 166 465-75 
Einstein A, Infeld L and Hoffmann B 1938 Ann. Math. 39 65-78 
Estabrook F B 1969 Astrophys. J .  158 81-3 
Fock V 1959 The Theory ofspace,  Time and Graoitation (Oxford: Pergamon) p 294 
Nordtvedt K 1968 Phys. Ret.. 169 1017-25 
~ 1969 Phys. Rev. 180 1293-8 

Schiff L I 1967 Relatioity Theory and Astrophysics vol 1, ed J Ehlers (Philadelphia: American Mathematical 

Shapiro I I et a1 1971 Phys. Rev. Lett. 26 1132-6 
Thorne K S and Will C M 1971 Astrophys. J .  163 595-610 

____ 1970 Astrophys. J .  161 1059-67 

Society) 


